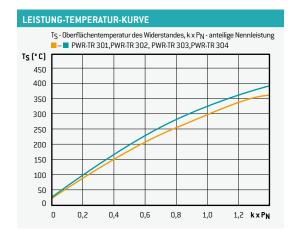
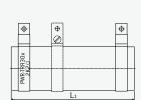

PWR-TR 3XX DRAHT-ROHRWIDERSTAND BIS 200 W

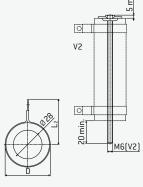
Zementierte Draht-Rohrwiderstände sind thermisch optimierte Widerstandsbauformen mit einem breiten Spektrum an Widerstandswerten und Leistungen. Vielfältige Kombinationsmöglichkeiten der elektrischen Eigenschaften, mehrere Anschluss- und Montagemöglichkeiten machen diese Widerstände für viele Anwendungen der Automatisierungstechnik, im Maschinen- und Anlagenbau interessant.

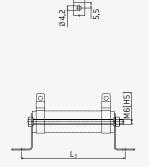


TYPAUSWAHL UND ABMESSUNGEN									
Тур	P _N bei 25° C	Wider- standswert	Betriebs- spannung	Dmax	L ₁	L _{2max}	Gewicht	L ₃	Anschluss
				mm	mm	mm	g	mm	
PWR-TR 301	75 W	0R4-47 K	1.200 V≅	35	100±1,8	40	130	124±1	B/E
PWR-TR 302	100 W	0R6-82 K	1.500 V≅	35	135±2,5	40	180	160±1	B/E
PWR-TR 303	150 W	OR9 – 110 K	2.000 V≅	35	200±3,8	40	270	226±1	B/E
PWR-TR 304	200 W	1R2 – 120 K	2.500 V≅	35	275±4,6	40	400	302±1	B/E
PWR-TRR – einstellbare Widerstände mit zusätzlicher Abgriffschelle.									

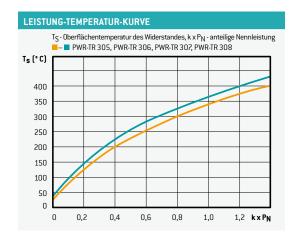
BESTELLBEISPIEL								
PWR-TR302 28 R 5 % E V1								
Halterung	H4 (55 g) V1 (29 g)							
Schutzgrad	IP 00							
Lagertemperatur	-25° C — +40° C							


PARAMETER	
Toleranz	±5 % (±10 %)
Temperaturkoeffizient TK	\leq \pm 150 ppm/K
Stabilität bei P _N bei 25° C, 1.000 h	± 5 %
Max. Überlastbarkeit	10 x P _N in 5 sec.
Prüfspannung gegen Halterung	3.000 ∀≅


PWR-TR 3XX DRAHT-ROHRWIDERSTAND BIS 500 W (2)



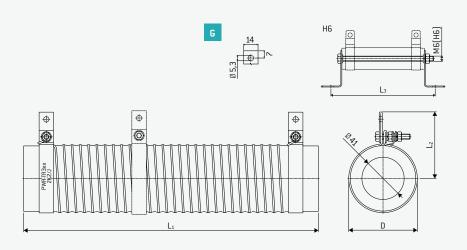
Zementierte Draht-Rohrwiderstände sind thermisch optimierte Widerstandsbauformen mit einem breiten Spektrum an Widerstandswerten und Leistungen. Vielfältige Kombinationsmöglichkeiten der elektrischen Eigenschaften, mehrere Anschluss- und Montagemöglichkeiten machen diese Widerstände für viele Anwendungen der Automatisierungstechnik, im Maschinen- und Anlagenbau interessant.



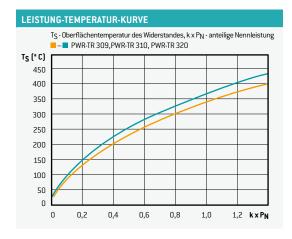
TYPAUSWAHL UND ABMESSUNGEN									
Тур	P _N bei 25° C	Wider- standswert	Betriebs- spannung	Dmax	L ₁	L _{2max}	Gewicht	L ₃	Anschluss
				mm	mm	mm	g	mm	
PWR-TR 305	200 W	0R7-82 K	2.000 V	47	130±3	50	300	155±1	F
PWR-TR 306	300 W	1R0 – 120 K	2.500 V	47	182±3,4	50	400	208±1	F
PWR-TR 307	400 W	1R5 – 160 K	2.750 V	47	250±4,2	50	550	277±1	F
PWR-TR 308	500 W	2R6 – 200 K	3.000 V	47	310±5	50	700	337±1	F

BESTELLBEISPIEL								
PWR-TR308 180 K 10 % F H5								
	· ·							
Halterung	H5 (91 g) V2 (57 g)							
Schutzgrad	IP 00							
Lagertemperatur	-25° C — +40° C							

 $PWR-TRR-einstellbare\ Widerst\"{a}nde\ mit\ zus\"{a}tzlicher\ Abgriffschelle.$


PARAMETER	
Toleranz	±5% (±10%)
Temperaturkoeffizient TK	\leq ± 150 ppm/K
Stabilität bei P _N bei 25° C, 1.000 h	± 5 %
Max. Überlastbarkeit	10 x P _N in 5 sec.
Prüfspannung gegen Halterung	4.000 V≅

PWR-TR 3XX DRAHT-ROHRWIDERSTAND BIS 1300 W (3)


Zementierte Draht-Rohrwiderstände sind thermisch optimierte Widerstandsbauformen mit einem breiten Spektrum an Widerstandswerten und Leistungen. Vielfältige Kombinationsmöglichkeiten der elektrischen Eigenschaften, mehrere Anschluss- und Montagemöglichkeiten machen diese Widerstände für viele Anwendungen der Automatisierungstechnik, im Maschinen- und Anlagenbau interessant.

TYPAUSWAHL UND ABMESSUNGEN								
P _N bei 25° C	Wider- standswert	Betriebs- spannung	Dmax	L ₁	L _{2max}	Gewicht	L ₃	Anschluss
			mm	mm	mm	g	mm	
750 W	3R6 – 130 K	4.000 V	68	390±5,5	68	2.200	430±1	G
1.000 W	4R7 – 180 K	4.500 V	68	515±6,8	68	2.800	555±1	G
1.300 W	6R2 – 180 K	4.500 V	68	660±6,8	68	3.500	700±1	G
	P _* bei 25° C 750 W 1.000 W	Px bei 25° C Wider-standswert 750 W 3R6 – 130 K 1.000 W 4R7 – 180 K	Ps bei 25° C Wider-standswert Wider-standswert Betriebs-spannung 750 W 3R6 – 130 K 4.000 V 1.000 W 4R7 – 180 K 4.500 V	Px bei 25° C Wider-standswert Wider-standswert Betriebs-spannung Px bei pannung Px b	Px bei 25° C Wider-standswert spannung Dmax pannung L1 750 W 3R6 – 130 K 4.000 V 68 390 ± 5,5 1.000 W 4R7 – 180 K 4.500 V 68 515 ± 6,8	Px bei 25° C Wider-standswert standswert Betriebs-spannung spannung Dmax bei 25° C L1 L2max mm mm mm mm 750 W 3R6 – 130 K 4.000 V 68 390 ± 5,5 68 1.000 W 4R7 – 180 K 4.500 V 68 515 ± 6,8 68	Px bei 25° C Wider-standswert 25° C Betriebs-spannung 25° C Dmax bei 25° C L1 L2max 2max 2max 2max 2max 2max 2max 2max	P _N bei 25° C Wider-standswert 25° C Betriebs-spannung 25° C Dmax bei 25° C L _{2 max} bei 25° C Gewicht L ₃ L ₃ 750 W 3R6 – 130 K 4.000 V 68 390 ± 5,5 68 2.200 430 ± 1 1.000 W 4R7 – 180 K 4.500 V 68 515 ± 6,8 68 2.800 555 ± 1

BESTELLBEISPIEL								
PWR-TR310 5 R8 5 % G H6								
Halterung	H6 (390 g)							
Schutzgrad	IP 00							
Lagertemperatur	-25° C – +40° C							

PARAMETER	
Toleranz	±5 % (±10 %)
Temperaturkoeffizient TK	≤ ± 150 ppm/K
Stabilität bei P _N bei 25° C, 1.000 h	± 5 %
Max. Überlastbarkeit	10 x P _N in 5 sec.
Prüfspannung gegen Halterung	4.000 V≅